Enhanced oxidation resistance of active nanostructures via dynamic size effect
نویسندگان
چکیده
A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs.
منابع مشابه
Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation.
We report a facile method for the synthesis of Pd nanostructures with highly open structure and huge surface area by reducing Na₂PdCl₄ with ascorbic acid and using cetylpyridinium chloride (CPC) as a surfactant in an aqueous solution. The prepared Pd nanostructures had an average overall size of 70 nm and were composed of dozens of needle-like thin arms, originating from the same core, with an ...
متن کاملHydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite
Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform i...
متن کاملMorphology Change and Structural Evaluation of Carbon Nanostructures
In this study, the change of porosity and roughness of carbon nanostructures, including fullerenes, carbon nanotubes and graphene was investigated according to oxidation process. The effect of oxidation was more sensible on smoother surface of nanostructures. Oxidation increases surface roughness of graphene up to 5.2% and porosity up to 35.2%. While, roughness of hummers graphene is 13....
متن کاملReversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
Understanding dynamic changes of catalytically active nanostructures under reaction conditions is a pivotal challenge in catalysis research, which has been extensively addressed in metal nanoparticles but is less explored in supported oxide nanocatalysts. Here, structural changes of iron oxide (FeO(x)) nanostructures supported on Pt in a gaseous environment were examined by scanning tunneling m...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کامل